Freshly Printed - allow 10 days lead
Two-Component Signaling Systems, Part A
Fueled by the explosion of sequence information provided by various genome projects, the number of two-component systems continues to rapidly grow.
Melvin I. Simon (Volume editor), Brian Crane (Volume editor), Alexandrine Crane (Volume editor)
9780123738516, Elsevier Science
Hardback, published 7 September 2007
592 pages, Approx. 100 illustrations (50 in full color)
22.9 x 15.1 x 3.3 cm, 1.25 kg
Multicellular organisms must be able to adapt to cellular events to accommodate prevailing conditions. Sensory-response circuits operate by making use of a phosphorylation control mechanism known as the "two-component system." Sections include: Computational Analyses of Sequences and Sequence Alignments Biochemical and Genetic Assays of Individual Components of Signaling Systems Physiological Assays and Readouts
Section I. Computational Analyses of Sequences and Sequence Alignments
CHAPTER 1: Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis.
CHAPTER 2: Two component systems in microbial communities: Approaches and resources for analyzing metagenomic data sets.
CHAPTER 3: Identification of sensory and signal-transducing domains in two-component signaling systems.
CHAPTER 4: Features of protein-protein interactions in two-component signaling deduced from genomic libraries.
CHAPTER 5: Sporulation phosphorelay proteins and their complexes: Crystallographic characterization.
CHAPTER 6: Control Analysis of Bacterial Chemotaxis Signaling.
CHAPTER 7: Classification of Response Regulators based on their Surface Properties
Section II. Biochemical and Genetic Assays of Individual Components of the Signaling Systems
CHAPTER 8: Purification and Assays of Rhodobacter capsulatus RegB-RegA Two Component Signal Transduction System.
CHAPTER 9: Purification and reconstitution of PYP-phytochrome (Ppr) with biliverdin and 4-hydroxycinnamic acid.
CHAPTER 10: Oxygen and Redox-Sensing by Two-Component Systems That Regulate Behavioral Responses. Behavioral Assays and Structural Studies of Aer using in vivo Disulfide Crosslinking.
CHAPTER 11: Two-Component Signaling in the Virulence of S. aureus: A Silkworm Larvae-Pathogenic Agent Infection Model of Virulence.
CHAPTER 12: TonB System, In vivo Assays and Characterization
CHAPTER 13: Biochemical Characterization of Plant Ethylene Receptors following Transgenic Expression in Yeast.
CHAPTER 14: Structure of SixA, a histidine protein phosphatase of the ArcB HPt domain in E. coli.
CHAPTER 15: Triggering and monitoring light-sensing reactions in protein crystals
CHAPTER 16
CHAPTER 17: Application of Fluorescence Resonance Energy Transfer to Examine EnvZ/OmpR Interactions
CHAPTER 18: Gene promoter scan (GPS) methodology for identifying and classifying co-regulated promoters.
CHAPTER 19: Targeting two-component signal transduction: A novel drug discovery system.
CHAPTER 20: The essential YycFG two–component system of Bacillus subtilis
Section III. Physiological Assays and Readouts
CHAPTER 21: Isolation and Characterization of Chemotaxis Mutants of the Lyme Disease Spirochete Borrelia burgdorferi Using Allelic Exchange Mutagenesis, Flow Cytometry and Cell Tracking.
CHAPTER 22: Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi.
CHAPTER 23: Regulation of Respiratory Genes by ResD-ResE Signal Transduction System in Bacillus subtilis.
CHAPTER 24: Physiological and genetic characterization of two-component systems in Myxococcus.
CHAPTER 25: Detection and measurement of two-component systems that control dimorphism and virulence in fungi.
CHAPTER 26: Using Two-Component Systems and other Bacterial Regulatory Factors for the Fabrication of Synthetic Genetic Devices.
Subject Areas: Cellular biology [cytology PSF], Molecular biology [PSD], Enzymology [PSBZ], Biochemistry [PSB], Genetics [non-medical PSAK], Biophysics [PHVN]