Freshly Printed - allow 8 days lead
The Theory of Large-Scale Ocean Circulation
This is a concise but comprehensive introduction to the basic elements of the theory of large-scale ocean circulation for advanced students and researchers.
R. M. Samelson (Author)
9781108446709, Cambridge University Press
Paperback / softback, published 1 March 2018
207 pages, 33 b/w illus. 28 exercises
25.5 x 18 x 1.5 cm, 0.41 kg
'… provides a very nice deductive derivation of the planetary geostrophic equations using scaling analysis, and is one of the most rigorous treatments that this reviewer has seen … There is also a nice selection of exercises at the end of the book relating to each chapter, varying in degree of difficulty. Speaking as an educator, this is a useful and welcome resource for those who plan on using this book as a class text … I would recommend this book to anyone who wishes to gain an understanding of some of the fundamental ideas that underpin our current thinking about the dynamics that govern the large-scale circulation. I would also recommend it as a graduate-level text for a dynamics-based physical oceanography class.' Andrew M. Moore, Bulletin of the American Meteorological Society
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.
1. Basic physical principles and equations
2. Reduced equations for large-scale motion
3. Planetary geostrophic vorticity dynamics
4. Stratified large-scale flow
5. Circulation in a rectangular mid-latitude basin
6. Eddy-driven subsurface motion
7. Circumpolar flow
8. Mid-depth meridional overturning
9. Thermohaline effects
10. Theory and observation.
Subject Areas: The environment [RN], Earth sciences [RB], Earth sciences, geography, environment, planning [R]