Freshly Printed - allow 10 days lead
The Theory of Critical Distances
A New Perspective in Fracture Mechanics
First ever book on Critical Distance methods
David Taylor (Author)
9780080444789, Elsevier Science
Hardback, published 30 May 2007
306 pages
24 x 16.5 x 2.3 cm, 0.67 kg
Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author’s own consultancy work. The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis.
Chapter 1. Introduction
Chapter 2. The Theory of Critical Distances: Basics
Chapter 3. The Theory of Critical Distances in Detail
Chapter 4. Other Theories of Fracture
Chapter 5. Ceramics
Chapter 6. Polymers
Chapter 7. Metals
Chapter 8. Composites
Chapter 9. Fatigue
Chapter 10. Contact Problems
Chapter 11. Multiaxial Loading
Chapter 12. Case Studies and Practical Aspects
Chapter 13. Theoretical Studies
Subject Areas: Stress & fracture [TGMD5], Materials science [TGM], Mechanical engineering [TGB]