Skip to product information
1 of 1
Regular price £94.89 GBP
Regular price £118.00 GBP Sale price £94.89 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

The Dynamic Loss of Earth's Radiation Belts
From Loss in the Magnetosphere to Particle Precipitation in the Atmosphere

A uniquely interdisciplinary focus on the effects of the Earth’s radiation from both an atmospheric and planetary science point of view

Allison Jaynes (Edited by), Maria Usanova (Edited by)

9780128133712

Paperback / softback, published 6 September 2019

344 pages
23.4 x 19 x 2.2 cm, 0.66 kg

"In summary, the uncertainties about Earth’s magnetosphere continue to be enormous, challenging and open to discussion. They are to the point that nowadays we can not state if the presence of a magnetosphere is necessary to make a planet habitable or not. Indeed, recent research hypothesizes that it could have been an indispensable ingredient to support the formation of biological molecules in our planet, by interaction with coronal mass ejections from the Sun [24]. The book edited by Jaynes and Usanova provides insight on some of the topics related to the study of the magnetosphere. Through its nine chapters and with the contribution of twenty-six leading researchers in the field, it covers from theoretical issues to observations. Probably, the biggest downside of this book is that it does not provide an introduction to the topic discussed. To be fair, the text is a collection of highly technical papers, presented as chapters. The chapter that is closer to an introduction, and that could work as the first one to be shown is chapter three. However, this chapter sometimes becomes hard to read, as it contains twenty pages of references, almost the same number as the main text. In this way, the book is aimed at specialists in the field. And anyone that is looking for introductory material should avoid it. The book is presented in three different formats, with similar prices for the paperback and ebook editions. We reviewed the paperback edition, and it looks fine. All the figures are in colour, something not common in many books and highly appreciated. However, the price seems excessive. This feeling comes above all from the little effort that appears to have been done to put a finest edited book together beyond simply collecting papers. In this way, unless you are a specialist very interested in the topic, it could be hard to invest over one-hundred dollars for a paperback edition or ebook. Not to say the bundle edition that comes at a price of three hundred dollars." --Contemporary Physics

The Dynamic Loss of Earth's Radiation Belts: From Loss in the Magnetosphere to Particle Precipitation in the Atmosphere presents a timely review of data from various explorative missions, including the Van Allen Probes, the Magnetospheric Multiscale Mission (which aims to determine magnetopause losses), the completion of four BARREL balloon campaigns, and several CubeSat missions focusing on precipitation losses. This is the first book in the area to include a focus on loss, and not just acceleration and radial transport.

Bringing together two communities, the book includes contributions from experts with knowledge in both precipitation mechanisms and the effects on the atmosphere. There is a direct link between what gets lost in the magnetospheric radiation environment and the energy deposited in the layers of our atmosphere. Very recently, NASA’s Living With a Star program identified a new, targeted research topic that addresses this question, highlighting the timeliness of this precise science. The Dynamic Loss of Earth's Radiation Belts brings together scientists from the space and atmospheric science communities to examine both the causes and effects of particle loss in the magnetosphere.

I. Radiation belt losses: outward transport and magnetopause shadowing II. Radiation belt losses: wave-particle interactions III. Radiation belt losses: high- and low-frequency wave-particle interactions IV. Ionospheric effects of particle precipitation V. Energetic Particle Precipitation (EPP) and chemistry VI. Effects of EPP on terrestrial atmosphere and weather systems

Subject Areas: Space science [TTD], Atmospheric physics [PHVJ], Geophysics [PHVG], Physics [PH]

View full details