Skip to product information
1 of 1
Regular price £53.19 GBP
Regular price £64.99 GBP Sale price £53.19 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 6 days lead

The Cell as a Machine

A systematic and mathematically accessible introductory text explaining cell functions through the engineering principles of robust devices.

Michael Sheetz (Author), Hanry Yu (Author)

9781107052734, Cambridge University Press

Hardback, published 11 January 2018

434 pages, 2 b/w illus. 136 colour illus.
25.3 x 19.2 x 2.4 cm, 1.11 kg

This unique introductory text explains cell functions using the engineering principles of robust devices. Adopting a process-based approach to understanding cell and tissue biology, it describes the molecular and mechanical features that enable the cell to be robust in operating its various components, and explores the ways in which molecular modules respond to environmental signals to execute complex functions. The design and operation of a variety of complex functions are covered, including engineering lipid bilayers to provide fluid boundaries and mechanical controls, adjusting cell shape and forces with dynamic filament networks, and DNA packaging for information retrieval and propagation. Numerous problems, case studies and application examples help readers connect theory with practice, and solutions for instructors and videos of lectures accompany the book online. Assuming only basic mathematical knowledge, this is an invaluable resource for graduate and senior undergraduate students taking single-semester courses in cell mechanics, biophysics and cell biology.

Part I. Principle of Complex Function in Robust Machines: 1. Robust self-replicating machines shaped by evolution
2. Complex functions of robust machines with emergent properties
3. Integrated complex functions with dynamic feedback
4. Cells exhibit multiple states, each with different functions
5. Life at low Reynolds number and the mesoscale leads to stochastic phenomena
Part II. Design and Operation of Complex Functions: 6. Engineering lipid bilayers to provide fluid boundaries and mechanical controls
7. Membrane trafficking – flow and barriers create asymmetries
8. Signaling and cell volume control through ion transport and volume regulators
9. Structuring a cell by cytoskeletal filaments
10. Moving and maintaining functional assemblies with motors
11. Microenvironment controls life, death and regeneration
12. Adjusting cell shape and forces with dynamic filament networks
13. DNA packaging for information retrieval and propagation
14. Transcribing the right information and packaging for delivery
15. Turning RNA into functional proteins and removing unwanted proteins
Part III. Coordination of Complex Functions: 16. How to approach a coordinated function – cell rigidity sensing and force generation across length scale
17. Integration of cellular functions for decision making
18. Moving from omnipotency to death
19. Cancer versus regeneration – the wrong versus right response to the microenvironment.

Subject Areas: Cellular biology [cytology PSF], Developmental biology [PSC], Biomedical engineering [MQW]

View full details