Freshly Printed - allow 10 days lead
Semiconducting Silicon Nanowires for Biomedical Applications
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material
Jeffery L. Coffer (Edited by)
9780128213513
Paperback, published 17 September 2021
440 pages, 140 illustrations (40 in full color)
22.9 x 15.2 x 2.8 cm, 1 kg
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material.
The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology.
Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures.
Part I: Introduction to silicon nanowires for biomedical applications: Synthesis and fundamental properties 1. Overview of semiconducting silicon nanowires for biomedical applications 2. Growth and characterization of semiconducting silicon nanowires for biomedical applications 3. Surface modification of semiconducting silicon nanowires for biosensing applications 4. Biocompatibility of semiconducting silicon nanowires Part II: Silicon nanowires for delivery and tissue engineering applications 5. Functional semiconducting silicon nanowires for cellular binding and internalization 6. Functional semiconducting silicon nanowires and their composites as tissue scaffolds 7. Mediated differentiation of stem cells by engineered semiconducting silicon nanowires 8. Nanoneedles devices for biomedicine 9. Therapeutic platforms based on silicon nanotubes 10. Silicon nanowires as spatially-defined therapeutics Part III: Silicon nanowires for detection and sensing 11. Semiconducting silicon nanowire array fabrication for high throughput screening in the biosciences 12. Nanostructured silicon for biological modulation 13. CMOS-compatible silicon nanowire field-effect transistors: Where nanotechnology pushes the limits in biosensing 14. Silicon nanowire composites for biosensing and therapy Part IV: Future opportunities and challenges 15. The competition: non-silicon nanowire/nanotube strategies in nanomedicine 16. Commercialization of silicon nanowire-based biotechnologies
Subject Areas: Electronics & communications engineering [TJ], Materials science [TGM], Quantum physics [quantum mechanics & quantum field theory PHQ], Condensed matter physics [liquid state & solid state physics PHFC], Biomedical engineering [MQW]