Freshly Printed - allow 6 days lead
Relativistic Numerical Hydrodynamics
A pedagogical overview of the computational framework required to solve problems in relativistic hydrodynamics and astrophysics.
James R. Wilson (Author), Grant J. Mathews (Author)
9780521631556, Cambridge University Press
Hardback, published 6 November 2003
234 pages, 34 b/w illus. 8 tables
25.5 x 18.1 x 1.8 cm, 0.564 kg
"Wilson and Mathews are veterans in the field of numerical relativity, and they have gathered together in this book a wealth of practical expertise which is rarely found in a single printed resource."
Malcolm R. Anderson, MATHEMATICAL REVIEWS
This book presents an overview of the computational framework in which calculations of relativistic hydrodynamics have been developed. It summarizes the jargon and methods used in the field, and provides illustrative applications to real physical systems. The authors explain how to break down the complexities of Einstein's equations and fluid dynamics, stressing the viability of the Euler–Lagrange approach to astrophysical problems. The book contains techniques and algorithms enabling one to build computer simulations of relativistic fluid problems for various astrophysical systems in one, two and three dimensions. It also shows the reader how to test relativistic hydrodynamics codes. Suitable for graduate courses on astrophysical hydrodynamics and relativistic astrophysics, this book also provides a valuable reference for researchers already working in the field.
Preface
1. Introduction
2. Special relativistic hydrodynamics
3. General relativistic hydrodynamics
4. Cosmological hydrodynamics
5. Stellar collapse and supernovae
6. Axially symmetric relativistic hydrodynamics
7. Hydrodynamics in three spatial dimensions
Index.