Skip to product information
1 of 1
Regular price £129.99 GBP
Regular price £155.00 GBP Sale price £129.99 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

Plant Exposure to Engineered Nanoparticles
Uptake, Transformation, Molecular and Physiological Responses

An in-depth analysis of the long-term exposure of plants to nanomaterials in terrestrial environments

Cyren Rico (Edited by)

9780323850322, Elsevier Science

Paperback / softback, published 9 August 2022

276 pages
22.9 x 15.2 x 1.8 cm, 0.45 kg

Plant Exposure to Engineered Nanoparticles: Uptake, Transformation, Molecular and Physiological Responses discusses the long-term exposure of plants, including agronomic crops, to nanomaterials in terrestrial environments. Chapters discuss changes in metabolite profiles in plants exposed to engineered nanomaterials, as well as modifications in elemental content of edible portions of plants. Biochemical pathways, root profiles, generational exposure, and biomass productivity are also analyzed in detail.

Subsequent chapters cover risks to trophic transfer, as well as human health and ecological functions, before concluding with future approaches to plant-nanomaterial research. The book covers important aspects of the interactions between plant and nanomaterials and will be a valuable resource to scientists and researchers in plant physiology, nanotechnology, agronomy and environmental science.

1. Changes in metabolite profile in plants exposed to engineered nanomaterials
2. Alterations in gene expression of plants exposed to nanomaterials
3. Modifications in elemental content of edible portions of plants exposed to nanomaterials
4. Plant biochemical pathways sensitive to nanomaterial exposure
5. Elemental and exudate profile of roots exposed to engineered nanomaterials
6. Full life cycle exposure of plants to nanomaterials: Impact on physiology and biomass productivity
7. Plants generational exposure to engineered nanomaterials
8. C & N Isotope discrimination in plants exposed to engineered nanomaterials
9. Plants co-exposure to nanomaterials and abiotic environmental stressors
10. Nanomaterial transformation in root-soil interface: A function of root exudate or microbial activity?
11. Risk of trophic transfer: Nanomaterial uptake and transformation in above ground plant tissue
12. Risks to human health or ecological function? Lessons learned in the last ten years
13. Future questions and approaches in plant-nanomaterial research

Subject Areas: Botany & plant sciences [PST]

View full details