Freshly Printed - allow 10 days lead
Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes
Explores new, emerging analysis and simulation approaches to help bioengineers select the best biological and biomechanical models for their research
Miguel Cerrolaza (Edited by), Sandra Shefelbine (Edited by), Diego Garzón-Alvarado (Edited by)
9780128117187, Elsevier Science
Paperback, published 5 October 2017
454 pages
27.6 x 21.5 x 2.8 cm, 1.27 kg
Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals.
1. Discontinuous finite-element model of hydrogels: predicting stiffness of nanofibres 2. Modeling the influence of mechanics on biological growth 3. Finite Element modeling and simulation of the multiphysic behavior of articular cartilage 4. Image-driven constitutive modeling for FE-based simulation of soft tissue biomechanics 5. Finite element modeling of Turing Pattern formation: An application to appearance and location of dentinal tubules 6. A discontinuous Galerkin model for the simulation of chemotaxis processes: application to stem cell injection after a myocardial infarction 7. Application of the Boundary Element Method in bioelectromagnetics 8. BEM in biomechanics: modelling, advances and limitations 9. A particle-finite element based framework for differentiation paths of stem cells to myocytes and adipocytes 10. Numerical simulation of bone cutting: hybrid SPH-FE approach 11. Smoothed Particle Hydrodynamics method and its applications to cardiovascular flow modeling 12. Agent Based Lattice Models of multicellular systems: numerical methods, implementation and applications 13. Multiscale agent-based computer models in skeletal tissue regeneration 14. Off-lattice Agent Based models for cell and tumor growth: numerical methods, implementation and applications 15. Agent-based numerical methods for 3D bioprinting in tissue engineering 16. Coupled Finite Element-Agent Based models for the simulation of vascular growth and remodeling 17. The mechanologic bone tissue remodeling analysis: a comparison between mesh-depending and meshless methods 18. Strong and weak form meshless methods in computational biomechanics 19. The finite volume particle method: towards a meshless technique for biomedical fluid dynamics 20. Multicomponent lattice Boltzmann models for biological applications 21. Lattice Boltzmann models of highly viscous fluids and multicellular self-assembly 22. The Lattice Boltzmann modeling: solving complex flows including biological cells 23. Lattice Boltzmann methods for bioengineering applications
Subject Areas: Biotechnology [TCB], Biochemical engineering [TC]