Freshly Printed - allow 8 days lead
Number Theory
Paris 1992–3
This is the fourteenth annual volume arising from the Seminaire de Theorie de Nombres de Paris covering the whole spectrum of number theory.
Sinnou David (Edited by)
9780521559119, Cambridge University Press
Paperback, published 18 May 1995
304 pages
22.9 x 15.2 x 1.7 cm, 0.45 kg
This is the fourteenth annual volume arising from the Seminaire de Theorie des Nombres de Paris. As with previous volumes the whole spectrum of number theory is discussed, with many contributions from some of the world's leading figures. The very latest research developments are covered and much of the work presented here will not be found elsewhere. Also included are surveys that will serve to guide the reader through the extensive published literature. This will be a necessary addition to the libraries of all workers in number theory.
1. Decomposition of the integers as a direct sum of two subsets K. Alladi
2. Théorie des motifs et interpretation géométrique des valeurs p-adic de G-functions (une introduction) Y. André
3. A refinement of the Faltings–Serre method N. Boston
4. Sous-variétés algébraique des variétés semi-abéliennes sur un corps fini N. Boxall
5. Propriétés transcendentes des fonctions automorphes P. Cohen
6. Supersingular primes common to two elliptic curves E. Fouvry and M. Ram Murty
7. Arithmetical lifting and its applications V. Gritsenko
8. Towards an arithmetical analysis of the continuum G. Harman
9. On G-adic forms of half integral weight for SL(2)/Q H. Hida
10. Structures algébraique sur les réseaux J. Martinet
11. Construction of elliptic units in function fields H. Oouhaba
12. Arbres, ordres maximaux et formes quadratiques entiéres I. Pays
13. On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except for 8.9.10=6! T. N. Shorey
14. Rédei-matrices and applications P. Stevenhagen
15. Decomposition of the integers as a direct sum of two subsets R. Tijdeman
16. CM Abelian varieties with almost ordinary reductions Y. G. Zahrin.
Subject Areas: Number theory [PBH]