Skip to product information
1 of 1
Regular price £112.29 GBP
Regular price £138.00 GBP Sale price £112.29 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI Approach

Presents groundbreaking new computational methodologies for Nonlinear Control for the Artificial Pancreas based on the Linear Matrix Inequality approach

Anirudh Nath (Author), Rajeeb Dey (Author), Valentina Emilia Balas (Author)

9780323907767, Elsevier Science

Paperback, published 18 August 2022

162 pages, 65 illustrations (35 in full color)
23.5 x 19 x 1.2 cm, 0.34 kg

Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI-Based Approach exposes readers to the various existing mathematical models that define the dynamics of glucose-insulin for Type 1 diabetes patients. After providing insights into the mathematical model of patients, the authors discuss the need and emergence of new control techniques that can lead to further development of an artificial pancreas. The book presents various nonlinear control techniques to address the challenges that Type 1 diabetic patients face in maintaining their blood glucose level in the safe range (70-180 mg/dl).

The closed-loop solution provided by the artificial pancreas depends mainly on the effectiveness of the control algorithm, which acts as the brain of the system. APS control algorithms require a mathematical model of the gluco-regulatory system of the T1D patients for their design. Since the gluco-regulatory system is inherently nonlinear and largely affected by external disturbances and parametric uncertainty, developing an accurate model is very difficult.

Section 1: Introduction
1. The History, Present & Future progression of Artificial Pancreas
2. Biomedical Control & its importance in Artificial Pancreas
3. A brief discussion in Nonlinear Control Tools

Section 2: Type 1 Diabetes: Control Oriented Modelling
4. A review on the existing Artificial pancreas Models
5. Developing and validating Nonlinear Models based on Input-Output data

Section 3: State Estimation via Robust Nonlinear Observers
6. Mathematical formulation of Robust Nonlinear Observers
7. State Estimation

Section 4: Design of Robust Nonlinear Control Techniques
8. Design of Nonlinear Control Technique based on Feedback Linearization
9. Design of Robust LMI based Control Techniques
10. Conclusions

Section 5: Proposed Architecture for In-Silico Artificial Pancreas
11. Sensors and Actuators
12. Integrated (in-silico) Model of Artificial Pancreas

Subject Areas: Biomedical engineering [MQW]

View full details