Freshly Printed - allow 8 days lead
Non-Classical Problems in the Theory of Elastic Stability
Presents techniques for stability analysis based on the probabilistic theory of stability or 'anti-optimization' theory.
Isaac Elishakoff (Author), Yiwei Li (Author), James H. Starnes, Jr (Author)
9780521020107, Cambridge University Press
Paperback / softback, published 15 September 2005
356 pages, 121 b/w illus.
24.5 x 17 x 1.9 cm, 0.568 kg
'This substantial and attractive volume is a well-organized and superbly written one that should be warmly welcomed.' Current Engineering Practice
When a structure is put under an increasing compressive load, it becomes unstable and buckling occurs. Buckling is a particularly significant concern in designing shell structures such as aircraft, automobiles, ships, or bridges. This book discusses stability analysis and buckling problems and offers practical tools for dealing with uncertainties that exist in real systems. The techniques are based on two complementary theories which are developed in the text. First, the probabilistic theory of stability is presented, with particular emphasis on reliability. Both theoretical and computational issues are discussed. Secondly, the authors present the alternative to probability based on the notion of 'anti-optimization', a theory that is valid when the necessary information for probabilistic analysis is absent, that is, when only scant data are available. Design engineers, researchers, and graduate students in aerospace, mechanical, marine, and civil engineering who are concerned with issues of structural integrity will find this book a useful reference source.
Preface: why still another book on stability?
1. Mode localization in buckling of structures
2. Deterministic problems of shells with variable thickness
3. Stochastic buckling of structures: Monte Carlo method
4. Stochastic buckling of structures: analytical and numerical, non-Monte-Carlo techniques
5. Anti-optimization in buckling of structures
6. Application of the Gudunov-Conte shooting method to buckling analysis
7. Application of computerized symbolic algebra in buckling analysis
References
Index.
Subject Areas: Mechanical engineering [TGB]