Freshly Printed - allow 10 days lead
Neurotoxicity of Nanomaterials and Nanomedicine
Presents exciting research in neurotoxicity and nanomaterials, including their use in medicine, including diagnosis probes, drug carriers, and embedded materials
Xinguo Jiang (Edited by), Huile Gao (Edited by)
9780128045985
Hardback, published 29 September 2016
358 pages
22.9 x 15.1 x 2.5 cm, 0.68 kg
Neurotoxicity of Nanomaterials and Nanomedicine presents an overview of the exciting research in neurotoxicity and nanomaterials. Nanomaterials have been extensively used in medicine, including diagnosis probes, drug carriers, and embedded materials. While some have been approved for clinical use, most nanomaterials are waiting to be transferred from lab to clinic. However, the toxicity is a main barrier that restricts the translation. This comprehensive book includes chapters on the most commonly used individual nanoparticles, with information on the applications, neurotoxicity, and related mechanisms of each, providing the most in-depth and current information available. The book examines the pathways that nanomaterials enter into, and eliminate, from the brain, along with the strategies that could reduce the neurotoxicity of nanomaterials. Providing a background to the subject, detailed information, and ideas for future directions in research, the book is essential for students and researchers in toxicology, and for those in medicine, neurology, pharmacology, pharmaceutical science, and materials science who are researching nanomaterials.
1. The application of nanomaterials in medicine
2. The route of nanomaterials entering brain
3. The distribution and elimination of nanomaterials in brain
4. The most common neurotoxicity of nanomaterials and their mechanism
5. The application, neurotoxicity and related mechanism of titanium dioxide nanoparticles
6. The application, neurotoxicity and related mechanism of iron oxide nanoparticles
7. The application, neurotoxicity and related mechanism of silver nanoparticles
8. The application, neurotoxicity and related mechanism of Manganese-containing nanoparticles
9. The application, neurotoxicity and related mechanism of silica nanoparticles
10. The application, neurotoxicity and related mechanism of carbon-based nanoparticles
11. The application, neurotoxicity and related mechanism of cationic polymers
12. The application, neurotoxicity and related mechanism of natural polymer-based nanoparticles
13. The strategies to reduce neurotoxicity of nanomaterials and the corresponding mechanism
Subject Areas: Neurosciences [PSAN], Medical toxicology [MMGT], Public health & preventive medicine [MBN]