Skip to product information
1 of 1
Regular price £131.27 GBP
Regular price £155.00 GBP Sale price £131.27 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Describes and summarizes the state-of- the-art of modelling and computations of particle-laden turbulent flows

Shankar Subramaniam (Edited by), S. Balachandar (Edited by)

9780323901338, Elsevier Science

Paperback / softback, published 25 October 2022

586 pages, 100 illustrations (25 in full color)
22.9 x 15.2 x 3.6 cm, 0.91 kg

Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research.  Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method.

Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers.

1. Introduction Shankar Subramaniam and S. Balachandar 2. Particle dispersion and preferential concentration in particle-laden turbulence Andrew J. Banko and John K. Eaton 3. Physics of two-way coupling in particle-laden homogeneous isotropic turbulence Antonino Ferrante and Said Elghobashi 4. Coagulation in turbulent particle-laden flows Lian-Ping Wang 5. Efficient methods for particle-resolved direct numerical simulation Markus Uhlmann, Jos Derksen, Anthony Wachsy, Lian-Ping Wangz and Manuel Moriche 6. Results from particle-resolved simulations Agathe Chouippe, Aman G. Kidanemariam, Jos Derksen, Anthony Wachs and Markus Uhlmann 7. Modeling of short-range interactions between both spherical and non-spherical rigid particles Anthony Wachs, Markus Uhlmann, Jos Derksen and Damien P. Huet 8. Improved force models for Euler - Lagrange computations Jeremy A. K. Horwitz 9. Deterministic extended point - particle models S. Balachandar and Martin R. Maxey 10. Stochastic models Aaron M. Lattanzi and Shankar Subramaniam 11. Volume-filtered Euler - Lagrange method for strongly coupled fluid particle flows Jesse Capecelatro and Oliver Desjardins 12. Quadrature-based moment methods for particle-laden flows Alberto Passalacqua and Rodney O. Fox 13. Eulerian-Eulerian modeling approach for turbulent particle-laden flows Berend van Wachem 14. Multiscale modeling of gas-fluidized beds Yali Tang and J.A.M. (Hans) Kuipers 15. Future directions Shankar Subramaniam and S. Balachandar

Subject Areas: Fluid mechanics [PHDF]

View full details