Freshly Printed - allow 10 days lead
Metal Oxides and Related Solids for Electrocatalytic Water Splitting
Key introduction to the fundamentals, material synthesis, design and fabrication strategies of metal-oxide based electrocatalysts for water splitting applications
Junlei Qi (Edited by)
9780323857352, Elsevier Science
Paperback / softback, published 18 May 2022
404 pages, 170 illustrations (40 in full color)
22.9 x 15.2 x 2.6 cm, 0.66 kg
Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process.
Part I - Introduction to Metal Oxide-Based Electrocatalysis 1. Introduction to water splitting technologies 2. The Fundamentals of Metal Oxides for Electrocatalytic Water Splitting 3. Features of Design and Fabrication of Metal Oxide-Based Electrocatalysts 4. Noble Metal Oxide Based Electrodes Interfaces Design for Application in Water Splitting Part II - Transition Metal Oxides and Their Prospects for Application in Water Splitting 5. Structure and Basic Properties of Transition Metal Oxides designed for Application in Water Splitting 6. Defect Engineering for Modifying Transition Metal Oxides 7. Interfaces Joining for Modifying Transition Metal Oxides 8. Doping Engineering Towards Metal Oxides for Water Splitting Part III - Other approaches to developing electrocatalysts for water splitting 9. Layered hydroxides as electrocatalysts for water splitting 10. Metal Oxy Compounds Heterogeneous Interfaces Joining for Water Splitting 11. Metal phosphide based electrocatalysts for water splitting 12. Metal-Organic Framework (MOF)-Derived Electrocatalysts for Water Splitting 13. In-Situ Characterizations for Application in Water Splitting 14. Summary and outlook
Subject Areas: Electronics & communications engineering [TJ], Materials science [TGM]