Skip to product information
1 of 1
Regular price £114.59 GBP
Regular price £145.00 GBP Sale price £114.59 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

Mechanisms of DNA Recombination and Genome Rearrangements: Methods to Study Homologous Recombination

Continues the legacy of this premier serial with quality chapters authored by leaders in the field of enzymology

Maria Spies (Volume editor), Anna Malkova (Volume editor)

9780128144299, Elsevier Science

Hardback, published 17 February 2018

610 pages
22.9 x 15.1 x 3.4 cm, 0.45 kg

Praise for the Series: "Should be on the shelves of all libraries in the world as a whole collection." --Chemistry in Industry "The work most often consulted in the lab." --Enzymologia "The Methods in Enzymology series represents the gold-standard." --Neuroscience

Mechanisms of DNA Recombination and Genome Rearrangements: Methods to Study Homologous Recombination, Volume 600, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field.

Homologous genetic recombination remains the most enigmatic process in DNA metabolism. The molecular machines of recombination preserve the integrity of the genetic material in all organisms and generate genetic diversity in evolution. The same molecular machines that support genetic integrity by orchestrating accurate repair of the most deleterious DNA lesions, however, also promote survival of cancerous cells and emergence of radiation and chemotherapy resistance. This two-volume set offers a comprehensive set of cutting edge methods to study various aspects of homologous recombination and cellular processes that utilize the enzymatic machinery of recombination The chapters are written by the leading researches and cover a broad range of topics from the basic molecular mechanisms of recombinational proteins and enzymes to emerging cellular techniques and drug discovery efforts.

1. Processing of DNA Double-Strand Breaks in Yeast Robert Gnügge, Julyun Oh and Lorraine S. Symington 2. Methods to Study DNA End Resection I: Recombinant Protein Purification Roopesh Anand, Cosimo Pinto and Petr Cejka 3. Methods to Study DNA End Resection II: Biochemical Reconstitution Assays Cosimo Pinto, Roopesh Anand and Petr Cejka 4. Direct Quantitative Monitoring of Homology-Directed DNA Repair of Damaged Telomeres Priyanka Verma, Robert L. Dilley, Melina T. Gyparaki and Roger A. Greenberg 5. Kinetic Analysis of the Exonuclease Activity of the Bacteriophage T4 Mre11–Rad50 Complex Tibebe A. Teklemariam, Osvaldo D. Rivera and Scott W. Nelson 6. Observation and Analysis of RAD51 Nucleation Dynamics at Single-Monomer Resolution Shyamal Subramanyam, Colin D. Kinz-Thompson, Ruben L. Gonzalez and Maria Spies 7. Determining the RAD51-DNA Nucleoprotein Filament Structure and Function By Cryo-Electron Microscopy Lingyun Zhao, Jingfei Xu, Weixing Zhao, Patrick Sung, and Hong-Wei Wang 8. Expression, Purification, and Biochemical Evaluation of Human RAD51 Protein Shyamal Subramanyam and Maria Spies 9. TIRF-Based Single-Molecule Detection of the RecA Presynaptic Filament Dynamics Sung H. Kim 10. The RadA Recombinase and Paralogs of the Hyperthermophilic Archaeon Sulfolobus Solfataricus Michael L. Rolfsmeier and Cynthia A. Haseltine 11. Reconstituting the 4-Strand DNA Strand Exchange Olga M. Mazina and Alexander V. Mazin 12. Purification Of Saccharomyces Cerevisiae Homologous Recombination Proteins Dmc1 and Rdh54/Tid1 and a Fluorescent D-Loop Assay Yuen-Ling Chan and Douglas K. Bishop 13. Probing Dynamic Assembly and Disassembly of Rad51 Tuned by Srs2 Using smFRET Yupeng Qiu, Hye R. Koh and Sua Myong 14. The Recombination Mediator BRCA2: Architectural Plasticity of Recombination Intermediates Revealed by Single-Molecule Imaging (SFM/TIRF) Arshdeep Sidhu, Dejan Ristic, Humberto Sánchez and Claire Wyman 15. Single-Molecule Dynamics and Localization of DNA Repair Proteins in Cells Maarten W. Paul, Alex N. Zelensky, Claire Wyman and Roland Kanaar 16. Single-Stranded DNA Curtains for Studying the Srs2 Helicase Using Total Internal Reflection Fluorescence Microscopy Luisina De Tullio, Kyle Kaniecki and Eric C. Greene 17. Single-Molecule Analysis of Replication Protein A–DNA Interactions Fletcher E. Bain, Laura A. Fischer, Ran Chen and Marc S. Wold 18. Single-Molecule Studies of ssDNA-Binding Proteins Exchange Olivia Yang and Taekjip Ha 19. Dissecting the Recombination Mediator Activity of BRCA2 Using Biochemical Methods Catharina von Nicolai, Åsa Ehlén, Juan S. Martinez and Aura Carreira 20. Approaches to Understanding the Mediator Function of Brh2 in Ustilago maydis Qingwen Zhou, William K. Holloman and Milorad Kojic 21. GEN1 Endonuclease: Purification and Nuclease Assays Ying Wai Chan and Stephen C. West 22. Biochemical and Structural Properties of Fungal Holliday Junction-Resolving Enzymes Yijin Liu, Alasdair Freeman, Anne-Cécile Déclais, Anton Gartner and David M. J. Lilley 23. Preparation and Resolution of Holliday Junction DNA Recombination Intermediates Rajvee Shah Punatar and Stephen C. West

Subject Areas: Molecular biology [PSD], Biochemistry [PSB]

View full details