Freshly Printed - allow 10 days lead
Light Scattering by Nonspherical Particles
Theory, Measurements, and Applications
Foreword by H.C. van de Holst, Leiden University
Michael I. Mishchenko (Edited by), Joachim W. Hovenier (Edited by), Larry D. Travis (Edited by)
9780124986602
Hardback, published 22 September 1999
720 pages
22.9 x 15.1 x 3.8 cm, 1.12 kg
"Rapid advances have been made in our knowledge of electromagnetic scattering by nonspherical particles, and the aim of this book is to 'provide a systematic state-of-the-art summary of the field.' Thirty-one authors contributed 20 papers (each a chapter), using a consistent notation and general outline, and there is a 71-page collective reference list at the end. The book will be of interest to a wide variety of geophysicists (and astronomers) working with scattering problems." --BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, May 2000
"An excellent survey that will enormously benefit novice and non-specialist researchers and constitute a useful reference source for experienced specialist researchers." --Optik 112, No. 3 (2001)
Approx.720 pages
Preface. H.C. van de Hulst, Hints from History: A Foreword. Introduction. M.I. Michchenko, J.W. Hovenier, and L.D. Travis, Concepts, Terms, Notation. M.I. Mishchenko, W.J. Wiscombe, J.W. Hovenier, and L.D. Travis, Overview of Scattering by Nonspherical Particles. J.W. Hovenier and C.V.M. van der Mee, Basic Relationships for Matrices Describing Scattering by Small Particles. Theoretical and Numerical Techniques. I.R. Ciric and F.R. Cooray, Separation of Variables for Electromagnetic Scattering by Spheroidal Particles. B.T. Draine, The Discrete Dipole Approximation for Light Scattering by Irregular Targets. M.I. Mishchenko, L.D. Travis, and A. Macke, T-Matrix Method and its Applications. P. Yang and K.N. Liou, Finite-Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles. Compounded Scattering by Compounded Spherical Particles. K.A. Fuller and D.W. Mackowski, Electromagnetic Scattering by Compounded Spherical Particles. P. Chýlek, G. Videen, D.J.W. Geldart, J.S. Dobbie, and H.C.W. Tso, Effective Medium Approximations for Heterogeneous Particles. A. Macke, Monte Carlo Calculations of Light Scattering by Large Particles with Multiple Internal Inclusions. K. Muinonen, Light Scattering by Stochastically Shaped Particles. Laboratory Measurements. J.W. Hovenier, Measuring Scattering Matrices of Small Particles at Optical Wavelengths. B.Å.S. Gustafson, Microwave Analog to Light Scattering Measurements. Applications. K. Sassen, Lidar Backscatter Depolarization Technique for Cloud and Aerosol Research. K.N. Liou, Y. Takano, and P. Yang, Light Scattering and Radiative Transfer in Ice Crystal Clouds: Applications to Climate Research. K. Aydin, Centimeter and Millimeter Wave Scattering from Nonspherical Hydrometeors. J.L. Haferman, Microwave Scattering by Precipitation. M.S. Quinby-Hunt, P.G. Hull, A.J. Hunt, Polarized Light Scattering in the Marine Environment. K. Lumme, Scattering Properties of Interplanetary Dust Particles. A.G. Hoekstra and P.M.A. Sloot, Biomedical and Biophysical Applications of Nonspherical Scattering.
Subject Areas: Meteorology & climatology [RBP], Oceanography [seas RBKC], Atmospheric physics [PHVJ], Geophysics [PHVG], Applied physics [PHV], Optical physics [PHJ]