Skip to product information
1 of 1
Regular price £46.69 GBP
Regular price £51.99 GBP Sale price £46.69 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 8 days lead

Inequalities: A Journey into Linear Analysis

This book contains a wealth of inequalities used in linear analysis, explaining in detail how they are used.

D. J. H. Garling (Author)

9780521699730, Cambridge University Press

Paperback, published 5 July 2007

346 pages, 128 exercises
24.4 x 17.3 x 1.8 cm, 0.59 kg

'… contains a wealth of inequalities … both classical and contemporary, complemented with detailed recipes on how to use them. … The author … brings back Muirhead's maximal function, which is usually treated as a misnomer quoted to other authors. This book is a compulsory item on every teacher's bookshelf and it should be strongly recommended to students. … an endless source of very good problems for students' theses of all levels.' EMS Newsletter

This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.

Introduction
1. Measure and integral
2. The Cauchy–Schwarz inequality
3. The AM-GM inequality
4. Convexity, and Jensen's inequality
5. The Lp spaces
6. Banach function spaces
7. Rearrangements
8. Maximal inequalities
9. Complex interpolation
10. Real interpolation
11. The Hilbert transform, and Hilbert's inequalities
12. Khintchine's inequality
13. Hypercontractive and logarithmic Sobolev inequalities
14. Hadamard's inequality
15. Hilbert space operator inequalities
16. Summing operators
17. Approximation numbers and eigenvalues
18. Grothendieck's inequality, type and cotype.

Subject Areas: Calculus & mathematical analysis [PBK]

View full details