Freshly Printed - allow 10 days lead
Handbook of Numerical Methods for Hyperbolic Problems
Applied and Modern Issues
Cutting-edge explanations of existing algorithms and their analysis for readers working on the theoretical aspects of algorithm development and numerical analysis
Remi Abgrall (Edited by), Chi-Wang Shu (Edited by), Roland Glowinski (Series edited by), Qiang Du (Series edited by), Michael Hintermüller (Series edited by), Endre Süli (Series edited by)
9780444639103, Elsevier Science
Hardback, published 18 January 2017
610 pages
22.9 x 15.1 x 3.4 cm, 1.1 kg
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.
Boundary conditions, interface conditions 1. Absorbing / non-reflective boundary conditions Bjorn Engquist 2. Cut-cell methods Marsha Berger 3. Inverse Lax-Wendroff procedure Sirui Tan and Chi-Wang Shu 4. Multi-dimensional solvers and residual distribution schemes Philip Roe 5. Bound-preserving high order schemes Xiangxiong Zhang and Zhengfu Xu 6. Asymptotic preserving methods Shi Jin 7. Well balanced schemes and non-conservative methods Carlos Pares and Manuel Castro 8. Particle methods Alina Chertock 9. Low Mach number flows Herve Guillard Mesh adaptation 10. AMR Phillip Colella 11. Adjoint methods in adaptivity Paul Houston 12. Mesh Adaption/Conformal Grids/Unstructured Meshes Adrien Loseille 13. Efficiency in Solvers Antony Jameson Specialized Topics 14. Standard Gas: for p=f(p,e) Remi Abgrall 15. Shallow Water Equations Yulong Xing 16. Maxwell Equations and MHD Claus-Dieter Munz 17. Kinetic Problems Irene M. Gamba 18. Numerical Methods for Traffic Flow Models and Networks Suncica Canic and Benedetto Piccoli 19. Numerical Methods for Astrophysics Christian Klingenberg Modern Topics 20. Numerical methods for conservation laws with discontinuous coefficients Mishra Siddhartha and Remi Abgrall 21. Uncertainty quantification for hyperbolic systems of conservation laws Mishra Siddhartha 22. Multiscale Methods Assyr Abdulle
Subject Areas: Numerical analysis [PBKS]