Freshly Printed - allow 8 days lead
Geometry, Combinatorial Designs and Related Structures
This volume examines state of the art research in finite geometries and designs.
J. W. P. Hirschfeld (Edited by), S. S. Magliveras (Edited by), M. J. de Resmini (Edited by)
9780521595384, Cambridge University Press
Paperback, published 14 August 1997
268 pages, 28 b/w illus. 25 tables
22.8 x 15.3 x 1.7 cm, 0.375 kg
This volume presents up-to-date research on finite geometries and designs, a key area in modern applicable mathematics. An introductory chapter discusses topics presented in each of the main chapters, and is followed by articles from leading international figures in this field. These include a discussion of the current state of finite geometry from a group-theoretical viewpoint, and surveys of difference sets and of small embeddings of partial cycle systems into Steiner triple systems. Also presented are successful searches for spreads and packing of designs, rank three geometries with simplicial residues and generalized quadrangles satisfying Veblen's Axiom. In addition, there are articles on new 7-designs, biplanes, various aspects of triple systems, and many other topics. This book will be a useful reference for researchers working in finite geometries, design theory or combinatorics in general.
Preface
Introduction
1. On maximum size anti-Pasch sets of triples
2. Some simple 7-designs
3. Inscribed bundles, Veronese surfaces and caps
4. Embedding partial geometries in Steiner designs
5. Finite geometry after Aschbacher's theorem: PGL(n,q) from a Kleinian viewpoint
6. The Hermitian function field arising from a cyclic arc in a Galois plane
7. Intercalates everywhere
8. Difference sets: an update
9. Computational results for the known biplanes of order 9
10. A survey of small embeddings for partial cycle systems
11. Rosa triple systems
12. Searching for spreads and packings
13. A note of Buekenhout–Metz unitals
14. Elation generalized quadrangles of order (q^2, q)
15. Uniform parallelisms of PG(3,3)
16. Double-fives and partial spreads in PG(5,2)
17. Rank three geometries with simplicial residues
18. Generalized quadrangles and the Axiom of Veblen
Talks
Participants.
Subject Areas: Combinatorics & graph theory [PBV]