Freshly Printed - allow 8 days lead
Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups
This book surveys progress in the domains described in Grothendieck's seminal manuscript 'Esquisse d'un Programme'.
Leila Schneps (Edited by), Pierre Lochak (Edited by)
9780521596411, Cambridge University Press
Paperback, published 7 August 1997
360 pages
22.8 x 15.3 x 2.1 cm, 0.485 kg
This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.
List of participants
Abstracts of the talks
Part I. Introduction: Part II. Abstracts: Part III. Dessins d'enfants: 1. Unicellular cartography and Galois orbits of plane trees N. Adrianov, G. Shabat
2. Galois groups, monodromy groups and cartographical groups G. Jones, M. Streit
3. Drawings, triangle groups and algebraic curves W. Harvey
4. Permutation techniques for coset representations of modular subgroups T. Hsu
5. On groups acting on dessin-labeled objects V. Shabat
6. Dessins d'enfants en genre 1 L. Zapponi
Part IV. Inverse Galois Problem: 7. The regular inverse Galois problem over large fields P. Debes, B. Deschamps
8. The symplectic braid group and Galois realizations K. Strambach, H. Volklein
9. Obstructed components of A5 modular towers M. Fried, Y. Kopeliovic
Part V. Galois Actions And Mapping Class Groups: 10. Monodromy of iterated integrals (non-Abelian unipotent periods) Z. Wojtkowiak
11. Deformation of singularities and mapping class groups M. Matsumoto
Part VI. Universal Teichmüller Theory: 12. The universal Ptolemy group and its completions R. Penner
13. Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée M. Imbert, V. Sergiescu
14. The universal Ptolemy–Teichmuller groupoid P. Lochak, L. Schneps.
Subject Areas: Algebra [PBF]