Skip to product information
1 of 1
Regular price £37.39 GBP
Regular price £37.99 GBP Sale price £37.39 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 8 days lead

Exploratory Galois Theory

Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level.

John Swallow (Author)

9780521544993, Cambridge University Press

Paperback, published 11 October 2004

222 pages
24.6 x 19.4 x 1.9 cm, 0.442 kg

'The exploration-based approach to the subject is very down-to-earth, entertaining, motivating, encouraging and enlightening, making the text highly suitable for undergraduate courses, for seminars, or for self-paced independent study by interested beginners.' Zentralblatt MATH

Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. The author organizes the theory around natural questions about algebraic numbers, and exercises with hints and proof sketches encourage students' participation in the development. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. Exploratory Galois Theory includes classical applications, from ruler-and-compass constructions to solvability by radicals, and also outlines the generalization from subfields of the complex numbers to arbitrary fields. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.

1. Preliminaries
2. Algebraic numbers, field extensions, and minimal polynomials
3. Working with algebraic numbers, field extensions, and minimal polynomials
4. Multiply-generated fields
5. The Galois correspondence
6. Some classical topics
Historical note.

Subject Areas: Mathematical & statistical software [UFM], Algebra [PBF]

View full details