Freshly Printed - allow 10 days lead
Deep Learning Techniques for Biomedical and Health Informatics
A comprehensive guide on emerging research and how to apply Deep Learning in the biomedical and healthcare fields
Basant Agarwal (Edited by), Valentina Emilia Balas (Edited by), Lakhmi C. Jain (Edited by), Ramesh Chandra Poonia (Edited by), Manisha Sharma (Edited by)
9780128190616
Paperback, published 14 January 2020
367 pages
23.4 x 19 x 2.4 cm, 0.75 kg
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing.
Part I: Deep Learning for Biomedical Engineering and Health Informatics 1. Introduction to Deep Learning and Health Informatics 2. A survey on deep learning algorithms for biomedical engineering 3. Machine learning and deep learning for Biomedical and Health Informatics 4. Deep learning for bioinformatics and drug discovery 5. Deep learning for Clinical Decision Support Systems 6. Deep learning for efficient Patients disease diagnosis and monitoring systems 7. Deep learning based methods for the Prediction of disease 8. Deep learning / Convolutional Neural Networks for Lung Pattern Analysis 9. Recommender systems for Biomedical and Health informatics Part II: Deep Learning and Electronics Health Records 10. Deep Learning with Electronic Health Records (EHR) 11. Health Data Structures and Management 12. Deep Patient Similarity Learning with EHR 13. Natural Language Processing, Electronic Health Records, and Clinical Research 14. Healthcare Informatics to analyze patient health records to enable better clinical decision making and improved healthcare outcomes Part III: Deep Learning for Medical Image Processing 15. Machine Learning in Bio-medical Signal and Medical image processing 16. Deep Learning for Medical Image Recognition 17. Unsupervised Deep Feature Representations Learning for Bio-medical Image analysis 18. Deep learning for optimizing medical big data 19. Deep learning for Brain Image Analysis 20. Deep Learning for Automated Brain Tumor Segmentation in MRI Images 21. Deep Learning and the Future of Biomedical Image Analysis
Subject Areas: Biomedical engineering [MQW]