Freshly Printed - allow 5 days lead
Data Science for Business and Decision Making
Combines statistics and operations research to teach business analytics to those who want to apply quantitative methods in their work
Luiz Paulo Favero (Author), Patricia Belfiore (Author)
9780128112168
Paperback / softback, published 3 June 2019
1244 pages
27.6 x 21.5 x 7.4 cm, 2.45 kg
"Data Science for Business and Decision Making brings together the key topics required as the foundation for understanding and applying analytics for decision making. The authors have carefully selected the topics, and each one is clearly explained, described, and reinforced with a diverse set of exercises." --Rahul Saxena, Cobot Systems "Data Science for Business and Decision Making provides a thorough essay about statistical methods which are commonly used in business without requiring a strong mathematical background. The presentation is rigorous and accessible thanks to a large number of examples that are developed step-by-step. The illustrations feature various software and the proposed exercises are particularly helpful for students and practitioners." --Francesco Bartolucci, University of Perugia
Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®.
Part 1: Foundations of Business Data Analysis 1. Introduction to Data Analysis and Decision Making 2. Type of Variables and Mensuration Scales Part 2: Descriptive Statistics 3. Univariate Descriptive Statistics 4. Bivariate Descriptive Statistics Part 3: Probabilistic Statistics 5. Introduction of Probability 6. Random Variables and Probability Distributions Part 4: Statistical Inference 7. Sampling 8. Estimation 9. Hypothesis Tests 10. Non-parametric Tests Part 5: Multivariate Exploratory Data Analysis 11. Cluster Analysis 12. Principal Components Analysis and Factorial Analysis Part 6: Generalized Linear Models 13. Simple and Multiple Regression Models 14. Binary and Multinomial Logistics Regression Models 15. Regression Models for Count Data: Poisson and Negative Binomial Part 7: Optimization Models and Simulation 16. Introduction to Optimization Models: Business Problems Formulations and Modeling 17. Solution of Linear Programming Problems 18. Network Programming 19. Integer Programming 20. Simulation and Risk Analysis Part 8: Other Topics 21. Design and Experimental Analysis 22. Statistical Process Control 23. Data Mining and Multilevel Modeling
Subject Areas: Finance [KFF]