Freshly Printed - allow 10 days lead
An Introduction to Non-Harmonic Fourier Series, Revised Edition, 93
Robert M. Young (Author)
9780127729558
Hardback, published 23 May 2001
234 pages
22.9 x 15.1 x 2.1 cm, 0.54 kg
"The theory of nonharmonic Fourier series is concerned with the completeness and expansion properties of sets of complex exponential functions. This text for graduate students and mathematicians provides an introduction to some of the classical and modern theories within this broad field. Young (mathematics, Oberlin College) discusses such topics as the stability of bases in Banach spaces, estimates for canonical products, and moment sequences in Hilbert space." --From Book News, Inc.
Approx.234 pages
Bases in Banach Spaces - Schauder Bases; Schauder's Basis for C[a,b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences;
The Coefficient Functionals; Duality; Riesz Bases;
The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space
Entire Functions of Exponential Type
The Classical Factorization Theorems - Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem
Restrictions Along a Line - The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space
The Completeness of Sets of Complex Exponentials -
The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials
Stability; Density and the Completeness Radius
Interpolation and Bases in Hilbert Space - Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability;
The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols
Index
Subject Areas: Wave mechanics [vibration & acoustics PHDS], Real analysis, real variables [PBKB], Calculus & mathematical analysis [PBK]