Skip to product information
1 of 1
Regular price £164.59 GBP
Regular price £245.00 GBP Sale price £164.59 GBP
Sale Sold out
Free UK Shipping

Freshly Printed - allow 10 days lead

Advances in Delay-tolerant Networks (DTNs)
Architecture and Enhanced Performance

An insightful guide into the role delay-tolerant networking can play in addressing interconnectivity problems, highlighting its importance as a key tool for such applications as disaster management and opening up a broad range of possible future uses.

Joel J.P.C. Rodrigues (Edited by)

9780857098405, Elsevier Science

Hardback, published 10 November 2014

298 pages
22.9 x 15.1 x 2.3 cm, 0.57 kg

Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds.

  • List of contributors
  • Woodhead Publishing Series in Electronic and Optical Materials
  • Preface
  • 1: An introduction to delay and disruption-tolerant networks (DTNs)
    • Abstract
    • 1.1 Introduction
    • 1.2 Delay-tolerant network architecture
    • 1.3 DTN application scenarios
    • 1.4 DTN routing protocols
    • 1.5 Conclusion
    • Acknowledgements
  • Part One: Types of delay-tolerant networks (DTNs)
    • 2: Delay-tolerant networks (DTNs) for satellite communications
      • Abstract
      • 2.1 Introduction
      • 2.2 DTN architecture
      • 2.3 Geosynchronous (GEO) constellations
      • 2.4 Low earth orbit (LEO) constellations
      • 2.5 Conclusion
      • Acknowledgements
    • 3: Delay-tolerant networks (DTNs) for deep-space communications
      • Abstract
      • 3.1 Introduction
      • 3.2 Data communications in deep space
      • 3.3 Networking requirements for deep-space data
      • 3.4 Implementing a deep-space DTN solution
      • 3.5 Summary
    • 4: Vehicular delay-tolerant networks (VDTNs)
      • Abstract
      • 4.1 Introduction
      • 4.2 Vehicular network applications
      • 4.3 Vehicular communications
      • 4.4 Vehicular delay-tolerant networks
      • 4.5 Conclusion
      • Acknowledgments
    • 5: Delay-tolerant networks (DTNs) for underwater communications
      • Abstract
      • 5.1 Introduction
      • 5.2 Related work
      • 5.3 A contemporary view of underwater delay-tolerant networks
      • 5.4 Future trends
      • 5.5 Conclusion
    • 6: Delay-tolerant networks (DTNs) for emergency communications
      • Abstract
      • 6.1 Introduction
      • 6.2 Overview of proposed DTN solutions
      • 6.3 Mobility models for emergency DTNs
      • 6.4 DistressNet
      • 6.5 Routing protocols for emergency DTNs
      • 6.6 Minimizing energy consumption in emergency DTNs
      • 6.7 Conclusions and future trends
  • Part Two: Improving the performance of delay-tolerant networks (DTNs)
    • 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs)
      • Abstract
      • 7.1 Introduction
      • 7.2 DTN architecture and Bundle Protocol implementation profiles
      • 7.3 Alternative approaches
      • 7.4 Future trends
      • 7.5 Sources of further information and advice
    • 8: Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs)
      • Abstract
      • 8.1 Introduction
      • 8.2 Challenges
      • 8.3 Overview of multiple existing opportunistic routing protocols in mobile ad hoc networks
      • 8.4 Combining on-demand opportunistic routing protocols
      • 8.5 Open research topics and future trends
      • 8.6 Sources of further information and advice
    • 9: Reliable data streaming over delay-tolerant networks (DTNs)
      • Abstract
      • 9.1 Introduction
      • 9.2 Challenges for streaming support in DTNs
      • 9.3 Using on-the-fly coding to enable robust DTN streaming
      • 9.4 Evaluation of existing streaming proposals over a DTN network
      • 9.5 Implementation discussion
      • 9.6 Conclusion
    • 10: Rapid selection and dissemination of urgent messages over delay-tolerant networks (DTNs)
      • Abstract
      • 10.1 Introduction
      • 10.2 One-to-many communication in resource-constrained environments
      • 10.3 Random Walk Gossip (RWG)
      • 10.4 RWG and message differentiation
      • 10.5 Evaluation with vehicular mobility models
      • 10.6 Discussion
    • 11: Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs)
      • Abstract
      • 11.1 Introduction
      • 11.2 Social characteristics of DTNs
      • 11.3 Social-based human mobility models
      • 11.4 Socially aware data forwarding in DTNs
      • 11.5 Conclusion
    • 12: Performance issues and design choices in delay-tolerant network (DTN) algorithms and protocols
      • Abstract
      • 12.1 Introduction
      • 12.2 Performance metrics
      • 12.3 Processing overhead
      • 12.4 The curse of copying - I/O performance matters
      • 12.5 Throughput
      • 12.6 Latency and queuing
      • 12.7 Discovery latency and energy issues
      • 12.8 Conclusions
    • 13: The quest for a killer app for delay-tolerant networks (DTNs)
      • Abstract
      • 13.1 Introduction
      • 13.2 The quest for a problem
      • 13.3 DTN as an enabling technology
      • 13.4 Conclusions and future trends
      • 13.5 Sources of further information and advice
  • Index

Subject Areas: Computer architecture & logic design [UYF], Computer networking & communications [UT], Building construction & materials [TNK], Telephone technology [TJKT], Communications engineering / telecommunications [TJK]

View full details